
Construction of the irreducibles of B(2, 2)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys. A: Math. Gen. 39 3341

(http://iopscience.iop.org/0305-4470/39/13/013)

Download details:

IP Address: 171.66.16.101

The article was downloaded on 03/06/2010 at 04:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/39/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 39 (2006) 3341–3366 doi:10.1088/0305-4470/39/13/013

Construction of the irreducibles of B(2, 2)

Evangelos Melas

Department of Applied Mathematics, University of Crete, Heraklion, 71409 Heraklion, Greece
and
Demokritos National Research Center Institute of Nuclear Physics, Ag. Paraskevi,
GR-15310 Athens, Greece

E-mail: evangelosmelas@yahoo.co.uk and melas@tem.uoc.gr

Received 9 November 2005
Published 15 March 2006
Online at stacks.iop.org/JPhysA/39/3341

Abstract
The ordinary Bondi–Metzner–Sachs (BMS) group B is the common asymptotic
symmetry group of all radiating, asymptotically flat, Lorentzian spacetimes.
As such, B is the best candidate for the universal symmetry group of general
relativity. However, in studying quantum gravity, spacetimes with signatures
other than the usual Lorentzian one and complex spacetimes are frequently
considered. Generalizations of B appropriate to these other signatures have
been defined earlier. In particular, the generalization B(2, 2) appropriate to
the ultrahyperbolic signature (+, +,−,−) has been described in detail, and
the study of its irreducible unitary representations (IRs) of B(2, 2) has been
initiated. The infinite little groups have been given explicitly, but the finite
little groups have only been partially described. This study is completed by
describing in detail the finite little groups and by giving all the necessary
information in order to construct the IRs of B(2, 2) in all cases.

PACS numbers: 04.60.−m, 02.90.+p, 02.20.Qs, 02.20.Tw, 02.20.Rt

1. Introduction

In a study of the class of asymptotically flat spacetimes which represent bounded gravitational
sources that are quiet in the beginning, then emit gravitational radiation, and then turn quiet
again, Bondi, Metzner and Sachs found [1] that the set of coordinate transformations which
preserve suitable, radiation-dictated, boundary conditions imposed on the asymptotic region
in light-like future directions, forms a pseudo-group of local diffeomorphisms (‘asymptotic
isometries’), the BMS group B However, Penrose showed that [2], by ‘going to infinity’, B
could be interpreted as an exact global transformation group B × I + −→ I + of the ‘future
null boundary’ I + of the spacetimes concerned. Due to its universality—it is the same for
the whole class of asymptotically flat spacetimes studied by Bondi, Metzner and Sachs—B
soon attracted attention as an approach to quantum gravity [3, 4] or the problem of ‘internal
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symmetries’ [5]. A study of IRs of B was started by Sachs [3], and taken further by Cantoni
[6].

In a study [7] whose importance is difficult to overemphasize and which ever since has
shaped to a great extent the spirit of research in elementary particle physics, Wigner (in
1939) treated explicitly for the first time the infinite-dimensional representations of a Lie
group, namely of the Poincare group P . In this study, Wigner, using a minimal number of
well-established physical principles, gave among other things (a) a complete unconstrained
description of all possible solutions of all possible Poincare-invariant wave equations without
finding or solving the equations, and (b) a theoretical definition of a relativistic elementary
particle—it is that physical entity which is described by a unitary irreducible representation
of the Poincare group P . Moreover, Wigner isolated within representation theory a parameter
as being the mathematical counterpart of the ‘spin’ of the elementary particle; this parameter
is one of the two parameters which parameterize the IRs of P , the second one being the
mass of the elementary particle squared. Wigner’s ideas have been repeatedly exploited and
generalized in mathematics, particularly, by G W Mackey, in developing the theory of induced
representations of locally compact groups [8–10].

McCarthy found it reasonable to attempt to lay a firm foundation for quantum gravity by
following through Wigner’s programme with B replacing P. For this purpose, he constructed
in a series of papers [11–13] the IRs of B by using Wigner–Mackey’s representation theory.
It turns out that there are two striking differences between P and B. The first difference is
as follows. The ‘little groups’ for P (from which the IRs are induced) are not all compact.
Compact little groups always give discrete spins, whereas, the non-compact ones also give
continuous spins. However, the little groups for B are always compact [12], and this means
that all the IRs of B necessarily have only discrete spins. It is as though the presence of gravity
obstructs the unphysical continuous spins of special relativity; that is, gravity gives a possible
explanation for the observed discreteness of elementary particle spins.

The second difference is the following. While the little groups of P are all of infinite
order, some of the little groups of B are finite. Indeed, certain IRs of B are induced [12] from
the IRs of the finite symmetry groups of the planar regular polygons or of the platonic solids
in ordinary Euclidean 3-space; that is, some of the IRs of B are induced from the complex
linear IRs of the cyclic or dihedral groups, or symmetry groups of the tetrahedron, cube or
icosahedron [12]. The much later appearance of precisely the same complex linear IRs of
precisely the same finite groups (and not just the groups themselves!) in gravitational instanton
theory (which is concerned with the real nonlinear self-dual Euclidean Einstein equations)
suggests [17] a connection with the IRs of B. For details of gravitational instanton theory, see,
e.g., [14, 15].

The role of the IRs of the group B is, however, much less well understood [16] than the role
of Wigner’s IRs. In order to make this role better understood and in order to make connections
with other approaches to quantum gravity, where Euclidean or complex versions of general
relativity are frequently considered, McCarthy showed [17] that B admits 42 generalizations to
real spacetimes of any signature, and also to complex spacetimes. It is an amazing and totally
unexpected result that all the ‘little groups’ for the complex BMS group CB [17], the Euclidean
BMS group EB [17], and the ultrahyperbolic BMS group B(2, 2) [19], the generalizations of
B appropriate to complex, Euclidean and ultrahyperbolic spacetime respectively, are compact,
which means that all the CB-elementary entities, all the EB-elementary entities, as well as all
the B(2, 2)-elementary entities carry discrete spin. Kronheimer [14, 15] has given a complete
classification of instanton moduli spaces for Euclidean instantons. However, his description
only partially describes the moduli spaces, since it still involves constraints. Kronheimer does
not solve the constraint equations, but it has been argued [17, 18] that the IRs of the BMS
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group and of its generalizations in complex spacetimes as well as in spacetimes with Euclidean
or ultrahyperbolic signature are what really lie behind the full description of (unconstrained)
moduli spaces of gravitational instantons.

The generalization B(2, 2) of B appropriate to the ultrahyperbolic signature (+, +,−,−)

has been described in detail [17], and the study of the IRs of B(2, 2) has been initiated [19] (see
[20] for a non-group-theoretic approach to ultrahyperbolic general relativity). Interestingly
enough finite little groups appear not only in the study of B but also in the study of B(2, 2)

[19]. In [19] the infinite little groups have been given explicitly but the finite little groups
have only been partially described: they are those subgroups of the Cartesian product group
Cn × Cm which contain the element (−I,−I ), where Cr is the cyclic group of order r, r

being finite, and I is the identity element. Therefore, the problem of constructing the finite
little groups reduces [19] to a seemingly very simple task; that of classifying all subgroups of
Cn ×Cm. Surprisingly, this task is less simple than it may appear at first sight. It turns out that
the solution is constructed from the ‘fundamental cases’ n = pa,m = pβ, (n,m are powers
of the same prime), via the prime decomposition of m and n. In this paper, we complete the
study of IRs of B(2, 2) initiated in [19] by giving explicit expressions of the finite little groups
of B(2, 2) and by providing all the necessary information in order to construct the operators
of the induced representations of B(2, 2) in all cases. Quite apart from the possible link
with instantons, the study of the representation theory of B(2, 2), as well as of the other
generalizations of B, is of much independent interest. Indeed, the results of this study are part
of a direct and reliable group-theoretic approach to quantum gravity.

In section 2 a summary of the results on the representation theory of B(2, 2) obtained so
far is given. In section 3 it is shown that the problem of constructing the subgroups of Cn ×Cm

is reduced to the problem of constructing the subgroups of Cpa × Cpβ , where p is a prime
number and a, β are non-negative integers. In section 4 the cyclic subgroups of Cpa ×Cpβ are
determined. In section 5 the non-cyclic subgroups of Cpa × Cpβ are counted. In section 6 the
subgroups of Cpa × Cpβ with two generators are determined. In section 7 explicit expressions
for the generators of the subgroups of Cn × Cm are given. In section 8 generators of the finite
little groups of B(2, 2) are determined explicitly. In section 9 all the necessary information
in order to construct explicitly the operators of the induced representations of B(2, 2)

is given.

2. Results on the representation theory of B(2, 2)

The induced representations of B(2, 2) are constructed by using Wigner–Mackey’s
representation theory of semi-direct products. A summary of Wigner–Mackey’s theory
is presented in appendix A. We summarize now the results obtained so far [19] on
the representation theory of B(2, 2). The group B(2, 2) is the BMS group appropriate to
the ‘ultrahyperbolic’ signature and asymptotic flatness in null directions [17]. Recall that the
ultrahyperbolic version of Minkowski space, sometimes written as R2,2, is just R4—the vector
space of row vectors with 4 real components—with scalar product x · y between x and y given
by

x · y = x0y0 + x2y2 − x1y1 − x3y3, (1)

where x, y ∈ R4 have components xµ and yµ respectively, where µ = 0, 1, 2, 3. The group
B(2, 2) is given by

B(2, 2) = L2
e(T

2) s© T G2 (2)
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where the homomorphism T from G2 into the group of automorphisms of L2
e(T

2) is given by

(T (g, h)α)(m, n) = k(m, g)k(n, h)α([mg] , [nh]), (3)

where (g, h) ∈ G2 = G × G (G = SL(2, R) is the matrix Lie group of 2 × 2 matrices
with real entries and unit determinant) and α ∈ L2

e(T
2); L2

e(T
2) is the Hilbert space of

all even square integrable functions defined on T 2, and T 2 = S1 × S1 is the 2-torus. We
specify now the meaning of evenness involved here. Let Sp = R2 − 0 be the Cartesian plane
punctured at the origin. In analogy with the Lorentzian case, the null cone in R2,2 is the set of
vectors with zero length. We define N ⊂ R2,2 to be the null cone with the origin deducted:
N = {x ∈ R2,2 | x �= 0, x ·x = 0}. With each vector x = (x1, x2) ∈ Sp, we associate its length
r ≡ |x| ≡

√
x2

1 + x2
2 and the unit length vector m ≡ [x] ≡ x/|x| having the same direction

as x. Thus we have

x = rm, r = |x|, m ≡ [x] ≡ x/|x|. (4)

Let S1 ⊂ Sp be the set of vectors of unit length in Sp : S1 = {x ∈ Sp | |x| = 1}. Each factor
of T 2 = S1 × S1 is given by the last equality. If (x, y) ∈ Sp2 ≡ Sp × Sp, define the radius
and direction of x by equation (4), and the radius t and direction n of y = (y1, y2) by

y = tn, t = |y|, n ≡ [y] ≡ y/|y|. (5)

The set of all real-valued functions α : T 2 → R, α ∈ L2
e(T

2) are even; that is, they satisfy the
evenness condition α(−m,−n) = α(m, n). It turns out that the k-factors which appear in (3)
are given by k(m, g) = |mg|, and similarly, k(n, h) = |nh|. Finally, [mg] ≡ (xg)/|xg| and
[nh] ≡ (yh)/|yh|, where xg, yh denote multiplication from the right of the row vectors x, h

with the SL(2, R) matrices g and h respectively. Using the last expressions for the k-factors
one can readily prove that the map T defined by (3) is an homomorphism. The usual angular
coordinates (ρ, σ ) for T 2 are defined by

m = (cos ρ, sin ρ) so x1 = r cos ρ, x2 = r sin ρ, (6)

n = (cos σ, sin σ) so y1 = t cos σ, y2 = t sin σ, (7)

where ρ and σ are the real numbers defined mod 2π , which may be taken in the ranges
0 � ρ < 2π, 0 � σ < 2π . The Lesbegue measure is defined by the 2-form

dλ(τ) = dρ ∧ dσ (8)

where τ = (m, n). L2
e(T

2) becomes a real Hilbert space via the introduction of the scalar
product

〈α, β〉 =
∫

T 2
α(τ)β(τ) dλ(τ). (9)

The norm defined by the scalar product (9) induces a metric in L2
e(T

2). The balls defined
by this metric define the open sets of a topology in L2

e(T
2) which is called Hilbert topology.

With this topology, L2
e(T

2), in addition to being a real Hilbert space, becomes an Abelian
topological group. The irreducible unitary continuous representations of L2

e(T
2) (characters)

can be given the structure of an Abelian group L̂, the dual group of L2
e(T

2). The action T of
G2 on L2

e(T
2) induces a dual action T̂ of G2 on L̂ defined by

(T̂ (g, h)χ)(α) := χ(T ((g, h)−1)α), (10)
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where, α ∈ L2
e(T

2), χ ∈ L̂, and (g, h) ∈ G2. As it is explained in appendix A it is this
dual action T̂ which, in principle, determines the IRs of B(2, 2). However, the mathematical
treatment is facilitated by passing to another action on the space of functionals of L2

e(T
2). In

fact, it can be shown [11] that every character χ can be written uniquely as

χ(α) = ei(φ,α), (11)

where α ∈ L2
e(T

2), φ is a continuous linear functional on L2
e(T

2); that is, φ belongs to the
topological dual L2

e

′
(T 2) of L2

e(T
2), and (φ, α) denotes the value of the functional φ on the

element α. From the Reisz–Fréchet theorem for Hilbert spaces one concludes that given a
continuous linear functional φ ∈ L2

e

′
(T 2), we can write for α ∈ L2

e(T
2)

(φ, α) = 〈φ, α〉, (12)

where the function φ ∈ L2
e(T

2) on the right-hand side is uniquely determined by (and denoted
by the same symbol as) the linear functional φ ∈ L2

e

′
(T 2) on the left-hand side. Equation (11)

yields that L̂ is isomorphic (as an Abelian group) to the topological dual L2
e

′
(T 2), which

in turn, via equation (12), is isomorphic (as a Hilbert space) to the space of even functions
L2

e(T
2). The dual action T̂ of G2 on L̂ induces an action T ′ of G2 on L2

e

′
(T 2) defined by

(T̂ (g, h)χ)(α) := ei〈T ′(g,h)φ,α〉. (13)

Compatibility of equations (10) and (13) requires

〈T ′(g, h)φ, α〉 = 〈φ, T ((g, h)−1)α〉. (14)

It is precisely this induced action T ′ on the space of functionals of L2
e(T

2) which determines,
in practice, the structure of IRs of B(2, 2). A straightforward calculation shows that

(T ′(g, h)φ)(m, n) = k−3(m, g)k−3(n, h)φ([mg], [nh]), (15)

where φ(m, n) ∈ L2
e(T

2). Recall (see appendix A) that the ‘little group’ Lφ of any φ ∈ L2
e(T

2)

is the largest subgroup of G2 which satisfies

Lφ = {(g, h) ∈ G2 | T ′(g, h)φ = φ.}. (16)

Equation (13) implies ((cf equation (A.4)) that

Lφ = Lχ, where Lχ = {(g, h) ∈ G2 | T̂ (g, h)χ = χ}. (17)

Henceforth, for convenience, since Lχ = Lφ, we will employ the group Lφ defined in (16).
L2

e(T
2) has been endowed with the Hilbert topology and G = SL(2, R) is equipped with the

standard topology given by the metric derived from the norm

|g| = (|a|2 + |b|2 + |c|2 + |d|2)1/2, g =
[
a b

c d

]
∈ G. (18)

In the product topology of L2
e(T

2) × G2, B(2, 2) becomes a topological group and it is in this
topology that all the ‘little groups’ are compact (in a finer topology non-compact little groups
may arise [24]). For every little group Lφ we define the corresponding invariant subspace
L2

e(Lφ) ⊂ L2
e(T

2) by

L2
e(Lφ) = {

φ ∈ L2
e(T

2)
∣∣ T ′(l)φ = φ for all l ∈ Lφ

}
. (19)

Henceforth, R(ϑ) denotes
(

cos ϑ sin ϑ
−sin ϑ cos ϑ

)
. Moreover, φ̃(ρ, σ ) is defined by

φ = φ(m, n) = φ(m(ρ), n(σ )) = φ̃(ρ, σ ). (20)
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The results are summarized in the following table:

Little groups Lφ and the corresponding invariant spaces L2
e(Lφ)

Lφ L2
e(Lφ)

(1) SO(2) × SO(2) = (R(ϑ), R(ϕ)) φ̃(ρ, σ ) = c, some c ∈ R

(2) CN × SO(2) = (
R

( 2π
N

i
)
, R(ϕ)

)
, φ̃(ρ, σ ) = g(ρ)

where N is even. g(ρ) is periodic of period 2π
N∫ 2π

N

0 (g(ρ))2 dρ < +∞
(3) SO(2) × CN = (

R(ϑ), R
( 2π

N
i
))

, φ̃(ρ, σ ) = l(σ )

where N is even. l(σ ) is periodic of period 2π
N∫ 2π

N

0 (l(σ ))2 dρ < +∞
(4) H(N, p, q) = (

R(pϑ), R
(
qϑ + 2π

N
i
))

, where,

either,

both p and q are odd,

p/N = p′/N ′, where p′, N ′ are coprime, φ̃(ρ, σ ) = f (pσ − qρ) ≡ f (σ̂ )

or, f (σ̂ ) is periodic of period 2π
N ′

p and q have opposite parity,
∫ 2π

N ′
0 (f (σ̂ ))2 dσ̂ < +∞

p/N = p′/N ′, where p′, N ′ are coprime,

and, N ′ is even.
(5) Subgroups C of Cn × Cm which contain φ̃(ρ, σ ) = 0 | (ρ, σ ) /∈ EC

the element (R(π), R(π)) = (−I, −I ).
∫
EC

(̃φ(ρ, σ ))2 dρ ∧ dσ < +∞
Both n and m are finite and even.

The description of the invariant subspaces L2
e(Lφ) of the fifth class of groups needs some

explanation. The representation (15), when restricted to SO(2) × SO(2) and expressed in
terms of ρ, σ, becomes

(T ′(R(ϑ), R(ϕ))̃φ)(ρ, σ ) = φ̃(ρ + ϑ, σ + ϕ) (21)

for all ρ, σ and all ϑ, ϕ. Therefore, the representation T ′ dictates a fixed point free action
T 2 × (SO(2) × SO(2)) → T 2 given by

((ρ, σ ), (R(ϑ), R(ϕ)) −→ (ρ + ϑ, σ + ϕ). (22)

When the last action is restricted to a (finite) subgroup C of Cn × Cm it reads

((ρ, σ ), (gi, gj )) −→ (ρgi, σgj ) (23)

where 0 � i � (n − 1), 0 � j � (m − 1), gi ∈ Cn, gj ∈ Cm and ρgi = ρ + 2π
n

i, φgj =
σ + 2π

m
j . The set EC ⊂ T 2 is an elementary domain for the subgroup C for precisely this

action. Recall that an elementary domain E for an action of a finite group G on a topological
space M is an open subset E ⊂ M such that the following conditions are satisfied:

(A) For any g1, g2 ∈ G, with g1 �= g2, Eg1 ∩ Eg2 = ∅,

(B)
⋃
g∈G

Eg = M (disjoint union). (24)

Here bar means topological closure, and ∅ means the empty set. It is easy to show that the
open set Fnm ⊂ T 2 defined by the formula Fnm = En × Em ⊂ T 2, where En is the open set
En = {θ ∈ S1 | 0 < θ < 2π/n}, is an elementary domain for the action (23). Interestingly
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enough, it can be shown [19] that there is a relation between EC and Fnm : EC = FnmS, where
S is any selection of representatives of left cosets of the coset space (Cn × Cm)/C. From every
pair (U, φ̃), where U is a unitary irreducible representation of Lφ and φ̃ is a specific element
of the corresponding invariant space L2

e(Lφ), a unique (up to equivalence) unitary irreducible
representation of B(2, 2) can be constructed (see appendix A). In the case of the finite little
groups the determination of φ̃ requires the description of the domains EC of the functions
φ̃, which in turn necessitates the explicit determination of the finite little groups of B(2, 2),
i.e., of the subgroups C of Cn × Cm which contain the element (−I,−I ) [19]. The next six
sections are devoted to the task of determining them explicitly. In sections 3–7 the subgroups
of Cn × Cm are constructed. In section 8 the specific subgroups C which contain the element
(−I,−I ) are isolated.

3. The problem simplified

In this section, we show that the problem of constructing the subgroups of Cn × Cm can be
simplified: it is reduced to the problem of constructing the subgroups of Cpa × Cpβ , where
p is a prime number and a, β are non-negative integers. This is precisely the content of the
proposition which follows.

Proposition 1. Let Cn × Cm be the direct product of the cyclic groups of finite order Cn

and Cm. Let n = p
a1
1 · p

a2
2 · · · pas

s and m = p
β1
1 · p

β2
2 · · · pβs

s be the prime decomposition
of the integers n and m, i.e., pi, i = 1, 2, . . . , s, are distinct prime numbers and ai, βi are
non-negative integers. Any subgroup of Cn × Cm has the form

C
q

λ1
1

× C
q

λ2
2

× · · · × Cq
λσ
σ

, (25)

i.e., is a direct product where the numbers q1, q2, . . . , qσ are prime and each one of them
appears at most twice. For any qj , j = 1, 2, . . . , σ , there exists a pi, i = 1, 2, . . . , s, so that
qj = pi . When qj appears once λj ∈ [1, max(ai, βi)]. When qj occurs twice, say qj = qj+k ,
then one of the indices λj , λj+k belongs to [1, ai] and the other one belongs to [1, βi]. For
every subgroup of Cn × Cm the expression (25) is unique.

Proof. Let n = p
r1
1 · p

r2
2 · · · prs

s and m = p
t1
1 · p

t2
2 · · · pts

s be the prime decomposition of the
integers n and m; i.e., pi, i = 1, 2, . . . , s, are distinct prime numbers and ri, ti are non-negative
integers. We have

Cn × Cm = (
Cp

a1
1

× C
p

β1
1

) × (
Cp

a2
2

× C
p

β2
2

) × (
Cp

a3
3

× C
p

β3
3

) × · · · × (
Cp

as
s

× C
p

βs
s

)
. (26)

The group Cn × Cm is an Abelian group, and therefore, Sylow’s second theorem (see, for
example, [21], pages 128, 131 and 137) implies that the group Cp

ai
i

× C
p

βi
i

, i = 1, 2, . . . , s

is the unique Sylow pi subgroup of Cn × Cm of order p
ai+βi

i . Every finite Abelian group is a
direct product of primary cyclic groups [22]. Consequently, if A is a subgroup of Cn × Cm

then A = C
q

λ1
1

× C
q

λ2
2

× C
q

λ3
3

× · · · × Cq
λσ
σ

, where q1, q2, q3, . . . , qσ are prime numbers, not
necessarily distinct from one another, and λ1, λ2, λ3, . . . , λσ are positive integers. According
to Lagrange’s theorem q1

λ1q2
λ2q3

λ3 · · · qσ
λσ divides p1

a1+β1p2
a2+β2p3

a3+β3 ···ps
as+βs . Therefore,

s � σ and for every qj , j = 1, 2, . . . , σ, there is a pi, i = 1, 2, . . . , s, so that qj = pi.

Consider now all occurrences of pi in A, so say qi = qj = qk = · · · = qw = pi. The
group As = C

q
λi
i

× C
q

λj

j

× C
q

λk
k

× · · · × Cq
λw
w

≡ C
p

λi
i

× C
p

λj

i

× C
p

λk
i

× · · · × Cp
λw
i

is a

p-subgroup of Cn × Cm. Since Cn × Cm is an Abelian group Sylow’s third theorem implies
that As = C

p
λi
i

× C
p

λj

i

× C
p

λk
i

× · · · × Cp
λw
i

is a subgroup of the unique Sylow pi subgroup

of Cn × Cm,Cp
ai
i

× C
p

βi
i

. The group Cp
ai
i

× C
p

βi
i

is a finite Abelian group, and therefore the
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rank of any of its subgroups cannot be higher than its own rank. Therefore, since Cp
ai
i

× C
p

βi
i

has two generators, there are at most two factors in As = C
p

λi
i

× C
p

λj

i

× C
p

λk
i

× · · · × Cp
λw
i

.

If As has one factor then As = C
p

λj

i

, and λj ∈ [1, max(ai, βi)] . If As has two factors then

As = C
p

λj

i

× Cp
λw
i

and one of the two integers λj , λw, say the integer λj , belongs to the

interval [1, ai], whereas the other integer λw belongs to the interval [1, βi]. In particular ([23],
page 42, theorem 3.3.3) if λj � λw and if ai � βi then λj ∈ [1, ai] and λw ∈ [1, βi]. Suppose
now that expression (25) is not unique. Thus, we assume that there are cyclic subgroups
C ′

q
λ1
1

, C ′
q

λ2
2

, C ′
q

λ3
3

, . . . , C ′
q

λσ
σ

of Cn × Cm, such that

A = C ′
q

λ1
1

× C ′
q

λ2
2

× C ′
q

λ3
3

× · · · × C ′
q

λσ
σ

. (27)

The prime qj , j ∈ {1, 2, 3, . . . , σ }, appears both in (25) and in (27) either once or twice.
We examine firstly the case where qj appears once. Then, the groups C

q
λj

j

and C ′
q

λj

j

are

Sylow qj subgroups of group A. From Sylow’s second theorem we conclude that the groups
C

q
λj

j

and C ′
q

λj

j

are conjugate. Since group A is Abelian, C
q

λj

j

= C ′
q

λj

j

. The last equation

holds for every prime number qj , j ∈ {1, 2, 3, . . . , σ }, which appears once in (25) (and in
(27)). Secondly, we examine the case where the prime number qj , j ∈ {1, 2, 3, . . . , σ },
appears twice in (25) (and in (27)). Thus we have qj = qj+k, for some prime numbers
qj , qj+k, where, j, j + k ∈ {1, 2, 3, . . . , σ }. Then, the groups C

q
λj

j

× C
q

λj+k

j

and C ′
q

λj

j

× C ′
q

λj+k

j

are Sylow qj subgroups of group A. With an argument similar to the previous one we can
show that C

q
λj

j

× C
q

λj+k

j

= C ′
q

λj

j

× C ′
q

λj+k

j

. The last equation holds for every prime number qj ,

j ∈ {1, 2, 3, . . . , σ }, which appears twice in (25) (and in (27)). Therefore, we conclude that,
in every case, A = C

q
λ1
1

× C
q

λ2
2

× C
q

λ3
3

× · · · × Cq
λσ
σ

= C ′
q

λ1
1

× C ′
q

λ2
2

× C ′
q

λ3
3

× · · · × C ′
q

λσ
σ

, and

consequently expression (25) is unique for every subgroup of Cn × Cm. This completes the
proof. �

It is worth noting that the determination of the subgroups of Cn × Cm involves the prime
decomposition of n and m. An attempt to find the subgroups of Cn × Cm without invoking the
prime decomposition of n and m failed.

4. The cyclic subgroups of Cpa × Cpβ

In section 3 we showed that the problem of constructing the subgroups of Cn × Cm is reduced
to the problem of constructing the subgroups of Cpa × Cpβ , where p is a prime number and
a, β are non-negative integers. The group Cpa × Cpβ is a finite Abelian group, and therefore,
its rank is higher than the rank of any of its subgroups. Consequently, since Cpa ×Cpβ has two
generators, its subgroups have either one or two generators. The following two propositions
settle the question of determining the cyclic subgroups of Cpa × Cpβ . Proposition 2 refers to
the case 1 � k � min(a, β) and proposition 3 refers to the case a < k � β.

Proposition 2. Let p be a prime number and let a and β be positive integers. Let Cpa and Cpβ

be cyclic groups of order pa and pβ respectively. When 1 � k � min(a, β) the direct product
Cpa × Cpβ has pk + pk−1 cyclic subgroups of order pk. The generators of these subgroups are
given by

(i) (
xrpa−k

, ypβ−k )
, r ∈ {0, 1, 2, . . . , pk − 1}, (28)
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and,
(ii) (

xpa−k

, yρpβ−k+1)
, ρ ∈ {0, 1, . . . , pk−1 − 1}, (29)

where x and y are generators of the groups Cpa and Cpβ respectively. The parameter
r , which takes values in the set {0, 1, . . . , pk − 1}, and ρ, which takes values in the set
{0, p, 2p, . . . , (pk−1 − 1)p}, parameterize the distinct pk + pk−1 groups .

Proof. Let Cpa and Cpβ be the cyclic groups of order pa and pβ respectively, and let Cpa ×Cpβ

be their direct product. In any cyclic group Cpk there are pk − pk−1 elements of order pk

which generate the whole group. Therefore, when 1 � k � min(a, β), the direct product
Cpa × Cpβ has p2k−p2(k−1)

pk−p(k−1) = pk + pk−1 cyclic subgroups of order pk . Now that we have
counted them, we proceed to construct them explicitly. Let x and y be generators of Cpa and
Cpβ respectively, and let (xi, yj ) be an element of Cpa × Cpβ which generates a subgroup of
Cpa × Cpβ isomorphic to Cpk . Then i is divisible by pa−k and j is divisible by pβ−k , and at
least one of i, j is not divisible by a larger power of p. We distinguish the two cases.

(1) Either i is not divisible by pa−k+1, or j is not divisible by pβ−k+1. Suppose first that
j is not divisible by pβ−k+1. Since j is not divisible by pβ−k+1 we can write j = pβ−kj1,

where j1 is not divisible by p. Since j1 is not divisible by p there is a unique integer
u ∈ {1, 2, . . . , pk −1} which solves the equation j1u = 1(mod pk). Therefore, by multiplying
both sides of j = pβ−kj1 by u we obtain uj = pβ−k(mod pβ). Since p does not divide u the
elements (xi, yj ) and (xui, yuj ) generate the same cyclic group Cpk . Taking into account that
uj = pβ−k(mod pβ) the generator (xui, yuj ) is written as follows: (xui, yuj ) = (xui, ypβ−k

).

Moreover, ui is a multiple of pa−k and ui = rpa−k(mod pa) for an r ∈ {0, 1, 2, . . . , pk −1}.
Therefore, in this case the cyclic groups Cpk are generated by the elements(

xrpa−k

, ypβ−k )
, r ∈ {0, 1, 2, . . . , pk − 1}.

These generators generate different cyclic groups Cpk .
(2) Next suppose that i is not divisible by pa−k+1 but j is divisible by pβ−k+1. With a

method similar to that used in the previous case, one can show that in this case the cyclic
groups Cpk are generated by the elements(

xpa−k

, yρpβ−k+1)
, ρ ∈ {0, 1, . . . , pk−1 − 1}.

These generators generate different cyclic groups Cpk . These cyclic groups are different from
those which were found in the first case. Now we have the correct number of subgroups, so
clearly we have everything. This completes the proof. �

Proposition 3. Let p be a prime number and let a be a non-negative integer and let β be a
positive integer. Let Cpa and Cpβ be cyclic groups of order pa and pβ respectively. The direct
product Cpa × Cpβ has pa cyclic subgroups of order pk , where a < k � β. The generators of
these subgroups are as follows,

(xj , yβ−k), j ∈ {0, 1, 2, . . . , pa − 1}, (30)

where x and y are generators of the groups Cpa and Cpβ respectively. The parameter j , which
takes values in the set {0, 1, . . . , pa − 1}, parameterizes the groups.

Proof. We must have k � β or there are no such cyclic subgroups at all. Since a < k � β

there are papk − papk−1 elements of Cpa × Cpβ of order equal to pk . In a cyclic group of

order pk there are pk − pk−1 elements of order pk . Therefore, there are pa(pk−pk−1)

pk−pk−1 = pa
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cyclic subgroups of Cpa ×Cpβ of order pk . Evidently, the pa subgroups of order pk generated
by (1, yβ−k), (x, yβ−k), (x2, yβ−k), . . . ,

(
x(pa−1), yβ−k

)
, where x is a generator of Cpa and y

is a generator of Cpβ , are different from one another. Henceforth, the pa cyclic subgroups of
Cpa × Cpβ of order pk , where a < k � β, are given by (30). A similar result holds when
a > k � β. This completes the proof. �

5. Counting the subgroups with two generators of Cpa × Cpβ

Before constructing explicitly the subgroups of Cpa × Cpβ which have two generators we
firstly count them. The counting is an indispensable part of the construction: when we obtain
the generators of the non-cyclic subgroups we firstly check that the generators are different
and then we count them. If their number equals the number of subgroups we obtain in this
section then we know that we have an exhaustive list of the subgroups. We applied the same
method in section 4 when we found the generators of the cyclic subgroups of Cpa × Cpβ .

However, it turns out that the counting of the non-cyclic subgroups is more involved than the
counting of the cyclic ones. The method of counting presented here was suggested to me by
Professor Charles Green.

Both the counting of the non-cyclic subgroups of Cpa ×Cpβ and their explicit construction
in section 6 are based both on the second isomorphism theorem (see, for example, [21], p 104)
and on the following lemma. The second isomorphism theorem (SIT) reads

Second isomorphism theorem. Let N be a normal subgroup of the group G. Then there is
a one-to-one correspondence between subgroups of G containing N and subgroups of G/N;
and in it normal subgroups correspond to normal subgroups.

We now state and prove the aforementioned lemma:

Lemma 1. Let a, β be positive integers which satisfy a � β, let p be a prime number and let
Cpa × Cpβ be the direct product of the cyclic groups Cpa and Cpβ . Let k be a positive integer
such that 1 � k � a. Then, the direct product Cpa ×Cpβ contains a unique copy of Cpk ×Cpk .
Let l be a positive integer which satisfies k � l � β. Then, every subgroup Cpk × Cpl of
Cpa × Cpβ contains the unique copy Cpk × Cpk .

Proof. Let K be the unique subset of G = Cpa × Cpβ which is defined by

K = {
g ∈ G : gpk = (I, I )

}
, (31)

where (I, I ) is the identity element of G. The set K forms a group. Moreover, the order of

K, |K|, is equal to p2k . Indeed, if (k1, k2) is an element of K then (k1, k2)
pk = (

k
pk

1 , k
pk

2

) =
(I, I ),, and so, since k � a � β, there are pk possibilities for k1 and pk possibilities for k2.
Therefore, in total, there are pkpk = p2k possibilities and consequently K has p2k elements.
Let H be a subgroup of G which is isomorphic to Cpk × Cpk . If gH = (h1, h2) is an element

of H then h
pk

1 = h
pk

2 = I. Therefore (h1, h2) ∈ K and so we conclude that H is a subgroup
of K . But the order of H, |H | = |K| = p2k and henceforth H = K . Consequently, there is
only one subgroup of Cpa × Cpβ which is isomorphic to Cpk × Cpk .

Let Cpk × Cpl denote a subgroup of Cpa × Cpβ which is isomorphic to the direct product
of cyclic groups Cpk and Cpl , where k � a and k � l � β. Let πi, i = 1, 2, be the projections
onto the factors of Cpk × Cpl . There is a unique copy A of Cpk in π1(Cpk × Cpl ) and a unique
copy B of Cpk in π2(Cpk ×Cpl ). Therefore A×B is isomorphic to Cpk ×Cpk and is a subgroup
of Cpk × Cpl . But there is only one copy of Cpk × Cpk in Cpa × Cpβ . Henceforth A × B is
identical to this unique copy and Cpk × Cpl contains it. This completes the proof. �
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By using the SIT and the previous lemma we can now calculate the number of the non-
cyclic subgroups which are contained in Cpa × Cpβ . This is the content of the following
proposition.

Proposition 4. Let a, β be positive integers which satisfy a � β, let p be a prime number
and let G = Cpa × Cpβ be the direct product of the cyclic groups Cpa and Cpβ . Let k be a
non-negative integer and let l be a positive integer such that 0 � k � a and k < l. Then we
have the following:

(i) When 0 � k < l � a the group G contains pl−k + pl−k−1 copies of Cpk × Cpl .
(ii) When 0 � k � a < l � β the group G contains pa−k copies of Cpk × Cpl .

Proof. When k = 0 and 0 < l � a proposition 2 shows that there are pl + pl−1 cyclic
subgroups Cpl of the group G. When k = 0 and 0 � a < l � β proposition 3 shows that there
are pa cyclic subgroups Cpl of the group G. This proves the proposition when k = 0. So now
it can be assumed that k > 0. Fix integers k and l such that 0 < k < l � β. Any subgroup H

of G which is isomorphic to Cpk × Cpl contains the unique copy N = Cpk × Cpk . According
to SIT the subgroups H are in one-to-one correspondence with the subgroups H/N of G/N.
We have H/N ∼= Cpl−k and G/N ∼= Cpa−k × Cpβ−k . So, the problem is reduced to counting the
cyclic subgroups Cpl−k of the direct product Cpa−k ×Cpβ−k . The answer to this question is given
by propositions 2 and 3. We distinguish the two cases. (1) When 0 < l − k � a − k � β − k

according to proposition 2 there are pl−k + pl−k−1 cyclic subgroups Cpl−k of the direct product
Cpa−k × Cpβ−k . From SIT it follows that the group G has pl−k + pl−k−1 subgroups isomorphic
to Cpk × Cpl . (2) When 0 � a − k < l − k � β − k according to proposition 3 there are pa−k

cyclic subgroups Cpl−k of the group Cpa−k × Cpβ−k . From SIT it follows that the group G has
pa−k subgroups isomorphic to Cpk × Cpl . This completes the proof. �

6. The subgroups of Cpa × Cpβ with two generators

In section 4 we found the cyclic subgroups of Cpa × Cpβ . We proceed now to determine the
generators of the non-cyclic subgroups of Cpa × Cpβ , i.e., of those subgroups which have two
generators. There are many ways to accomplish this. The one presented here was suggested
to me by Professor Peter Cameron, and it seems to be the shorter and neater one.

6.1. Description of the method

We construct explicitly the subgroups Cpk × Cpl of Cpa × Cpβ when 0 < k < l � β and
a � β. Let H be a group isomorphic to Cpk ×Cpl and let N denote the unique copy Cpk ×Cpk .
Let G denote the direct product Cpa × Cpβ and let x be a generator of the group Cpa and let
y be a generator of the group Cpβ . Let (h1, h2)N be a generator of the cyclic group H/N .
The elements of the group H are generated by the three elements (h1, h2),

(
xpa−k

, I
)

and(
I, ypβ−k )

. Since the group H has two generators any one of the elements (h1, h2),
(
xpa−k

, I
)

and
(
I, ypβ−k )

can be expressed via the other two. The two independent elements so obtained
generate all the elements of group H. So, the problem of finding, for fixed k and l, all the
subgroups Cpk × Cpl of Cpa × Cpβ , when 0 < k < l � β and a � β, is reduced to finding the
answers to the following two questions:

(i) Find the generators (h1, h2)N of all cyclic subgroups H/N ∼= Cpl−k of the direct product
G/N ∼= Cpa−k × Cpβ−k .
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(ii) From each element (h1, h2) obtained by answering question 1 and from the generators(
xpa−k

, I
)

and
(
I, ypβ−k )

of N construct two independent generators of each group H.

According to SIT the list of groups H so obtained is exhaustive.

6.2. The non-cyclic subgroups of Cpa × Cpβ

We distinguish the two cases:
(1) 0 < k < l � a: therefore, in this case we have 0 < l − k � a − k � β − k. In

the previous subsection it was shown that the problem of finding , for fixed k and l, all the
subgroups Cpk × Cpl of Cpa × Cpβ is reduced to answering two questions. Firstly, we answer
question 1.

(1) A generator of the subgroup (Cpa−k , I ) ∼= Cpa−k of G/N ∼= Cpa−k × Cpβ−k is the
element (x, I )N of the group G/N . Similarly, the element (I, y)N is a generator of
the group (I, Cpβ−k ) ∼= Cpβ−k . From proposition 2 we conclude that the direct product
G/N ∼= Cpa−k × Cpβ−k has pl−k + pl−k−1 cyclic subgroups isomorphic to H/N ∼= Cpl−k .
From these pl−k + pl−k−1 cyclic subgroups pl−k are generated by the generators

((x, I )N)rp
(a−k)−(l−k)

((I, y)N)p
(β−k)−(l−k) = (

xrpa−l

, ypβ−l )
N, r ∈ {0, 1, 2, . . . , pl−k − 1},

(32)

and the rest pl−k−1 cyclic subgroups of Cpa−k × Cpβ−k which are isomorphic to Cpl−k are
generated by the elements

((x, I )N)p
(a−k)−(l−k)

((I, y)N)ρp(β−k)−(l−k)+1 = (
xpa−l

, yρpβ−l+1)
N, (33)

where, ρ ∈ {0, 1, 2, . . . , pl−k−1 − 1}. Now we proceed with answering question 2.
(2) When 0 < k < l � a � β the elements of the subgroups H ∼= Cpk × Cpl

of the group G = Cpa × Cpβ are generated either by the three elements
(
xrpa−l

, ypβ−l )
,(

xpa−k

, I
)

and
(
I, ypβ−k )

, where r ∈ {0, 1, 2, . . . , pl−k − 1}, or by the three elements(
xpa−l

, yρpβ−l+1)
,
(
xpa−k

, I
)

and
(
I, ypβ−k )

, where ρ ∈ {0, 1, 2, . . . , pl−k−1 − 1}. We examine
in turn now these two cases.

(2a) Let H be any one of the pl−k subgroups of Cpa ×Cpβ which is isomorphic to Cpk ×Cpl

and which is generated by the three elements
(
xrpa−l

, ypβ−l )
,
(
xpa−k

, I
)

and
(
I, ypβ−k )

, where
r ∈ {0, 1, 2, . . . , pl−k − 1}. The group H has two independent generators and therefore
any one of the three elements

(
xrpa−l

, ypβ−l )
,
(
xpa−k

, I
)

and
(
I, ypβ−k )

can be generated by

the other two. In fact, if we raise the element
(
xrpa−l

, ypβ−l )
to the power pl−k we obtain(

xrpa−l

, ypβ−l )pl−k = (
xrpa−k

, ypβ−k )
. By multiplying

(
xrpa−k

, ypβ−k )
by the inverse of

(
xrpa−k

, I
)

we obtain
(
xrpa−k

, ypβ−k )((
xrpa−k )−1

, I
) = (

I, ypβ−k )
. Therefore, we can discard the generator(

I, ypβ−k )
. We conclude, that the pl−k subgroups H ∼= Cpk ×Cpl are generated by the elements(

xrpa−l

, ypβ−l )
,
(
xpa−k

, I
)
, where r ∈ {0, 1, 2, . . . , pl−k − 1}. (34)

(2b) Let H be now any one of the pl−k−1 subgroups of Cpa × Cpβ which is isomorphic
to Cpk × Cpl and which is generated by the three elements

(
xpa−l

, yρpβ−l+1)
,
(
xpa−k

, I
)

and(
I, ypβ−k )

, where ρ ∈ {0, 1, 2, . . . , pl−k−1 − 1}. It can be shown as before that the generator(
xpa−k

, I
)

can be discarded. We conclude that the pl−k−1 subgroups H ∼= Cpk × Cpl are
generated by the elements(

xpa−l

, yρpβ−l+1)
,
(
I, ypβ−k )

, where ρ ∈ {0, 1, 2, . . . , pl−k−1 − 1}. (35)

The number of the subgroups which are given in (34) and (35) coincides with the number
given in proposition 4.
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(2) 0 < k � a < l � β: therefore, we have 0 � a − k < l − k � β − k. It is to be noted
that in this case a cannot be equal to β and is strictly smaller than β. In section 6.1 it was
shown that the problem of finding, for fixed k and l, all the subgroups Cpk × Cpl of Cpa × Cpβ

is reduced to answering two questions. Firstly, we answer question 1.
(1) From proposition 3 we conclude that the direct product G/N ∼= Cpa−k ×Cpβ−k has pa−k

cyclic subgroups isomorphic to H/N ∼= Cpl−k . These pa−k cyclic subgroups are generated by
the elements

((x, I )N)j ((I, y)N)p
(β−k)−(l−k) = (

xj , ypβ−l )
N, j ∈ {0, 1, 2, . . . , pa−k − 1}. (36)

Now we proceed with answering question 2.
(2) As it was explained in section 6.1 when 0 < k � a < l � β the elements of all the

subgroups H ∼= Cpk × Cpl of the group G = Cpa × Cpβ are generated by the three elements(
xj , ypβ−l )

,
(
xpa−k

, I
)

and
(
I, ypβ−k )

, where j ∈ {0, 1, 2, . . . , pa−k − 1}. We can prove as

before that the generator
(
I, ypβ−k )

can be discarded. It is concluded that the pa−k subgroups
H ∼= Cpk × Cpl are generated by the elements(

xj , ypβ−l )
,
(
xpa−k

, I
)
, where j ∈ {0, 1, 2, . . . , pa−k − 1}. (37)

The number of subgroups given in (37) equals to the number given in proposition 4. So now
we have all the subgroups Cpk × Cpl of Cpa × Cpβ . We summarize the previous results in the
following theorem.

Theorem 1. Let p be a prime number and let k, l, a, β be integers which satisfy 0 < k < l � β

and a � β. Let Cpa × Cpβ denote the direct product of the cyclic groups Cpa and Cpβ and
let Cpk × Cpl denote the direct product of the cyclic groups Cpk and Cpl . Then we have the
following:

(i) When 0 < k < l � a � β the group Cpa × Cpβ has pl−k + pl−k−1 subgroups which are
isomorphic to the group Cpk × Cpl . From these subgroups, pl−k are generated by the
elements (

xrpa−l

, ypβ−l )
,
(
xpa−k

, I
)
, where r ∈ {0, 1, 2, . . . , pl−k − 1},

and the remaining pl−k−1 subgroups are generated by the elements(
xpa−l

, yρpβ−l+1)
,
(
I, ypβ−k )

, where ρ ∈ {0, 1, 2, . . . , pl−k−1 − 1}.
(ii) When 0 < k � a < l � β the group Cpa ×Cpβ has pa−k subgroups which are isomorphic

to the group Cpk × Cpl . These pa−k subgroups are generated by the elements(
xj , ypβ−l )

,
(
xpa−k

, I
)
, where j ∈ {0, 1, 2, . . . , pa−k − 1}.

This completes our consideration of the non-cyclic subgroups Cpk ×Cpl of the group Cpa ×Cpβ .

7. Generators of the subgroups of Cn × Cm

The group Cn × Cm is a finite Abelian group, and therefore, its rank is higher than
the rank of any of its subgroups. Consequently, since Cn × Cm has two generators, its
subgroups have either one or two generators. In this section, and in particular in corollary
1, and in theorem 2, prime decomposition of n and m is employed, i.e., it is assumed that
n = p

a1
1 · p

a2
2 · · · pas

s and m = p
β1
1 · p

β2
2 · · · pβs

s , where pi, i = 1, 2, . . . , s, are distinct
prime numbers and ai, βi are non-negative integers. Then we can write (equation (26))
Cn × Cm = (

Cp
a1
1

× C
p

β1
1

) × (
Cp

a2
2

× C
p

β2
2

) × (
Cp

a3
3

× C
p

β3
3

) × · · · × (
Cp

as
s

× C
p

βs
s

)
. It is also
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assumed that p1 < p2 < · · · < ps. The structure of the subgroups of Cn × Cm is deduced
from proposition 1. Indeed, if in equation (25) each qi, i = 1, 2, . . . , σ, occurs only once then
a cyclic subgroup of Cn × Cm is obtained. If at least one of the qi, i = 1, 2, . . . , σ, occurs
twice then a non-cyclic subgroup of Cn × Cm results. Using the previous observation, we can
formulate the general form of the subgroups of Cn × Cm. This is the content of the following
corollary which is an immediate consequence of proposition 1.

Corollary 1. Any subgroup C of Cn × Cm can be written as a direct product

C = A1 × A2 × A3 × · · · × As. (38)

If C has one generator then Ai is a cyclic subgroup of Cp
ai
i

× C
p

βi
i

, i = 1, 2, . . . , s and
vice versa. If C has two generators then at least one Ai is a non-cyclic subgroup of
Cp

ai
i

× C
p

βi
i

, i = 1, 2, . . . , s, and vice versa. For every subgroup C of Cn × Cm the expression
(38) is unique.

The knowledge of the general form of the subgroups of Cn × Cm does not suffice for the
construction of the IRs of B(2, 2). We actually need the explicit form of the subgroups of
Cn ×Cm, i.e., we need their generators. For this purpose, it will be convenient to employ here
the following [23]:

Lemma 2. Let s be a positive integer and let p1, p2, . . . , ps be distinct prime numbers. Let
G be the direct product of cyclic groups

G = C
p

k1
1

× C
p

k2
2

× · · · × Cp
ks
s
, (39)

where k1, k2, . . . , ks are positive numbers. Let gi be a generator of the cyclic group
C

p
ki
i

, i = 1, 2, . . . , s. Then the element

g = g1 · g2 · · · gs, (40)

where · denotes the group composition law in the group G, is a generator of the cyclic
group G.

The writing of explicit expressions of the generators of the subgroups of Cn × Cm

is facilitated by the use of the set SP of the permutations of s pairs of numbers(
p

a1
1 , p

β1
1

)
,
(
p

a2
2 , p

β2
2

)
, . . . ,

(
pas

s , p
βs
s

)
. Let P ∈ SP . By

P
(
p

ai

i , p
βi

i

) = (
p

aj

j , p
bj

j

)
, i, j = 1, 2, . . . , s, (41)

we denote that the permutation P moves the pair
(
p

ai

i , p
βi

i

)
at the ith position, to the j th

position. Obviously, pi ≡ pj , ai ≡ aj , and βi ≡ bj . By using theorem 1, propositions 2
and 3, corollary 1, and lemma 2 we can give explicit expressions for the generators of the
subgroups of Cn × Cm. This is the content of the following theorem.

Theorem 2. Let C be a subgroup of C of Cn × Cm. We distinguish the two cases:

(i) When C is non-cyclic then it can be written in a highly non-unique way as a direct product
of two cyclic groups C1 and C2, i.e.,

C = C1 × C2, (42)

whose orders are not relatively prime. A legitimate choice for the generators g1 and g2

of C1 and C2 is the following:

g1 = (xA1 , yB1), (43)
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where x is a generator of Cn, y is a generator of Cm,

A1

n
=

ν∑
i=1

rip
−ki

i +
ν+χ∑

i=ν+1

p
−ki

i +
ν+χ+τ∑

i=ν+χ+1

ji

/
p

ai

i +
ν+χ+τ+ψ∑

i=ν+χ+τ+1

p
−ki

i +
ν+χ+τ+ψ+σ∑

i=ν+χ+τ+ψ+1

rip
−ki

i

+
ν+χ+τ+ψ+σ+θ∑

i=ν+χ+τ+ψ+σ+1

p
−ki

i +
ν+χ+τ+ψ+σ+θ+φ∑

i=ν+χ+τ+ψ+σ+θ+1

ti/p
ai

i +
ν+χ+τ+ψ+σ+θ+φ+ξ∑

i=ν+χ+τ+ψ+σ+θ+φ+1

p
−ki

i ,

(44)

and

B1

m
=

ν∑
i=1

p
−ki

i +
ν+χ∑

i=ν+1

ρip
−ki+1
i +

ν+χ+τ∑
i=ν+χ+1

p
−ki

i +
ν+χ+τ+ψ∑

i=ν+χ+τ+1

ji

/
p

bi

i +
ν+χ+τ+ψ+σ∑

i=ν+χ+τ+ψ+1

p
−ki

i

+
ν+χ+τ+ψ+σ+θ∑

i=ν+χ+τ+ψ+σ+1

ρip
−ki+1
i +

ν+χ+τ+ψ+σ+θ+φ∑
i=ν+χ+τ+ψ+σ+θ+1

p
−ki

i +
ν+χ+τ+ψ+σ+θ+φ+ξ∑

i=ν+χ+τ+ψ+σ+θ+φ+1

ti
/
p

bi

i ,

(45)

g2 = (xA2 , yB2), (46)

where

A2

n
=

ν+χ+τ+ψ+σ∑
i=ν+χ+τ+ψ+1

p
−li
i +

ν+χ+τ+ψ+σ+θ+φ∑
i=ν+χ+τ+ψ+σ+θ+1

p
−li
i (47)

and

B2

m
=

ν+χ+τ+ψ+σ+θ∑
i=ν+χ+τ+ψ+σ+1

p
−li
i +

ν+χ+τ+ψ+σ+θ+φ+ξ∑
i=ν+χ+τ+ψ+σ+θ+φ+1

p
−li
i . (48)

(ii) When C is cyclic then it is generated by

g = (xA, yB), (49)

where

A = A1 and B = B1 when σ = θ = φ = ξ = 0. (50)

The non-negative integers ν, χ, τ, ψ, σ, θ, φ, ξ are such that ν + χ + τ + ψ + σ + θ + φ +
ξ � s. When C is cyclic then σ = θ = φ = ξ = 0. When C is non-cyclic then at least one of the
σ, θ, φ, ξ must be non-zero. Moreover,

(
p

aj

j , p
bj

j

) = P
(
p

ai

i , p
βi

i

)
, i, j = 1, . . . , s, for some

permutation P of the s pairs of numbers
(
p

a1
1 , p

β1
1

)
,
(
p

a2
2 , p

β2
2

)
, . . . ,

(
pas

s , p
βs
s

)
. Furthermore,

the allowed values of the other indices are easily deduced from propositions 2, 3 and
theorem 1.

Proof. By prime decomposing n and m we obtain equation (26). According to corollary 1
every subgroup C of Cn × Cm has the form C = A1 × A2 × A3 × · · · × As, where, when C is
cyclic, then, Ai is a cyclic subgroup of Cp

ai
i

× C
p

βi
i

, i = 1, 2, . . . , s, and when C is non-cyclic
at least one Ai is a non-cyclic subgroup of Cp

ai
i

× C
p

βi
i

, i = 1, 2, . . . , s. The possible choices
for the groups Ai, i = 1, 2, . . . , s, are given by propositions 2 and 3 and theorem 1. Consider
first the case of a non-cyclic C. We have to realize all possibilities for C. To this end, we choose
the Ai, i = 1, 2, . . . , s, groups as follows: ν to be of the form (28), χ to be of the form (29),
τ + ψ to be of the form (30), σ to be of the form (34), θ to be of the form (35), and finally,
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φ + ξ to be of the form (37). Obviously, ν + χ + τ + ψ + σ + θ + φ + ξ � s. To allow for at
least one Ai to be non-cyclic at least one of σ, θ, φ, ξ must be non-zero. Having the choice
for the groups Ai specified, still there is a great deal of freedom in writing C as C = C1 × C2,

i.e., as a direct product of two cyclic groups C1 and C2. Let x be a generator of Cn and y be a
generator of Cm. By using lemma 2 we find that a possible choice for the generators g1 and
g2 of C1 and C2, respectively, is given by

g1 =
ν∏

i=1

(
x

rip
ai−ki
i

i , y
p

bi−ki
i

i

)
·

ν+χ∏
i=ν+1

(
x

p
ai−ki
i

i , y
ρip

bi−ki +1
i

i

)
·

ν+χ+τ∏
i=ν+χ+1

(
x

ji

i , y
p

bi−ki
i

i

)

·
ν+χ+τ+ψ∏

i=ν+χ+τ+1

(
x

p
ai−ki
i

i , y
ji

i

)
·

ν+χ+τ+ψ+σ∏
i=ν+χ+τ+ψ+1

(
x

rip
ai−ki
i

i , y
p

bi−ki
i

i

)

·
ν+χ+τ+ψ+σ+θ∏

i=ν+χ+τ+ψ+σ+1

(
x

p
ai−ki
i

i , y
ρip

bi−ki +1
i

i

)

·
ν+χ+τ+ψ+σ+θ+φ∏

i=ν+χ+τ+ψ+σ+θ+1

(
x

ti
i , y

p
bi−ki
i

i

)
·

ν+χ+τ+ψ+σ+θ+φ+ξ∏
i=ν+χ+τ+ψ+σ+θ+φ+1

(
x

p
ai−ki
i

i , y
ti
i

)
, (51)

and

g2 =
ν+χ+τ+ψ+σ∏

i=ν+χ+τ+ψ+1

(
x

p
ai−li
i

i , I

)
·

ν+χ+τ+ψ+σ+θ+φ∏
i=ν+χ+τ+ψ+σ+θ+1

(
x

p
ai−li
i

i , I

)
·

ν+χ+τ+ψ+σ+θ∏
i=ν+χ+τ+ψ+σ+1

(
I, y

p
bi−li
i

i

)

·
ν+χ+τ+ψ+σ+θ+φ+ξ∏

i=ν+χ+τ+ψ+σ+θ+φ+1

(
I, y

p
bi−li
i

i

)
, (52)

where I is the identity element and
∏

denotes group multiplication in Cn × Cm. To

simplify notation in equations (51) and (52) we have set xi = x(n/p
ai
i ) and yi = y(m/p

bi
i ).

To account for all possible choices for the groups Ai in (51) and (52) we have employed
the elements of SP . In (51) it is assumed that aw < kw � bw, ay � ky > by , where
w ∈ {ν + χ + 1, . . . , ν + χ + τ }, and y ∈ {ν + χ + τ + 1, . . . , ν + χ + τ + ψ}. Moreover,
in (52) it is assumed that 1 � lw1 � aw1 < kw1 � bw1 , and , 1 � ly1 � by1 <

ky1 � ay1 , where w1 ∈ {ν + χ + τ + ψ + σ + θ + 1, . . . , ν + χ + τ + ψ + σ + θ + φ}, and
y1 ∈ {ν + χ + τ + ψ + σ + θ + φ + 1, . . . , ν + χ + τ + ψ + σ + θ + φ + ξ} . The values of the
rest of the indices which appear (51) and (52) are easily deduced from propositions 2 , 3 and
theorem 1. Addition of the exponents of x and y in (51) yields that g1 = (xA1 , yB1), where
A1 and B1 are given by (44) and (45) correspondingly. Similarly, addition of the exponents
of x and y in (52) gives that g2 = (xA2 , yB2), where A2 and B2 are given by (47) and (48)
respectively. Consider now the case of a cyclic C. Actualizing all possibilities for C necessitates
that the following choice for the groups Ai, i = 1, 2, . . . , s : ν must be of the form (28), χ

must be of the form (29), and finally, τ + ψ must be of the form (30). By using lemma 2 we
find that a generator g of C is given by equation (51) when σ = θ = φ = ξ = 0. Addition of
the exponents of x and y in (51) gives that g = (xA, yB), where A = A1 and B = B1 when
σ = θ = φ = ξ = 0. This completes the proof. �

The order |C1| of C1 is obtained from (43), (44) and (45), and similarly the order |C2| of
C2 results from (46), (47) and (48), and they are given by

|C1| =
ν+χ+τ+ψ+σ+θ+φ+ξ∏

i=1

p
ki

i , and |C2| =
ν+χ+τ+ψ+σ+θ+φ+ξ∏

i=ν+χ+τ+ψ+1

p
li
i . (53)



Construction of the irreducibles of B(2, 2) 3357

For the purposes of representation theory it is convenient to rewrite the non-cyclic subgroups
C = C1 × C2 as subgroups of SO(2) × SO(2):

C =
(

R

(
2π

n
(A1i + A2j)

)
, R

(
2π

m
(B1i + B2j)

))
, (54)

where i ∈ {0, . . . , |C1| − 1} and j ∈ {0, . . . , |C2| − 1}. For future reference we write explicitly
the coefficients A,B which appear in (49),

A
n

=
ν∑

i=1

rip
−ki

i +
ν+χ∑

i=ν+1

p
−ki

i +
ν+χ+τ∑

i=ν+χ+1

ji

/
p

ai

i +
ν+χ+τ+ψ∑

i=ν+χ+τ+1

p
−ki

i (55)

and

B
m

=
ν∑

i=1

p
−ki

i +
ν+χ∑

i=ν+1

ρip
−ki+1
i +

ν+χ+τ∑
i=ν+χ+1

p
−ki

i +
ν+χ+τ+ψ∑

i=ν+χ+τ+1

ji

/
p

bi

i . (56)

A cyclic subgroup C of Cn × Cm can easily be rewritten as a subgroup of SO(2) × SO(2):

C =
(

R

((
2π

n
A

)
i

)
, R

((
2π

m
B
)

i

))
, (57)

i ∈ {0, . . . , |C| − 1}. Finally, |C| = |C1| when σ = θ = φ = ξ = 0, i.e.,

|C| =
ν+χ+τ+ψ∏

i=1

p
ki

i . (58)

8. Explicit description of the finite little groups of B(2, 2)

The finite little groups C of B(2, 2) are those subgroups of Cn × Cm which contain the
element (−I,−I ) [19], i.e., the group Z2 = {(I, I ), (−I,−I )} . Since π1(C) = Cn

and π2(C) = Cm, π1(C) and π2(C) must each contain the element −I , both n and m

must be even. Therefore, in the prime decomposition of n = p
a1
1 · p

a2
2 · · ·pas

s and
m = p

β1
1 · p

β2
2 · · · pβs

s , p1 = 2, and a1 · β1 �= 0 (it is assumed that p1 < p2 < · · · < ps). The
group Z2 = {(I, I ), (−I,−I )} can only be contained in the factor Cp

a1
1

× C
p

β1
1

= C2a1 × C2β1

of

Cn × Cm = (
Cp

a1
1

× C
p

β1
1

) × (
Cp

a2
2

× C
p

β2
2

) × (
Cp

a3
3

× C
p

β3
3

) × · · · × (
Cp

as
s

× C
p

βs
s

)
,

(equation (26)). Henceforth, A − B, where A and B are sets, signifies those elements of A

which do not belong to B. The following two observations aim at determining the structure of
the little groups of B(2, 2). Firstly, from propositions 2 and 3, we observe that the only cyclic
subgroups C2k1 of C2a1 × C2β1 which contain the group Z2 are generated by(
xr12a1−k1

, y2β1−k1
)
, r1 ∈ {1, 2, . . . , 2k1 − 1} − {2, 2 · 2, . . . , (2k1−1 − 1)2}, (59)

where x and y are generators of the groups C2a1 and C2β1 respectively, r1 parameterizes
the groups, and 1 � k1 � min(a1, β1). Therefore, any cyclic little group is obtained by
restricting the group A1 in equation (38) to be one of the groups whose generators are given in
equation (59). We note that when k1 = 1 we obtain A1 = Z2. Secondly, we observe that
according to theorem 1 all the non-cyclic subgroups of C2a1 × C2β1 contain the group Z2. In
equation (26) Z2 can now be contained in a cyclic or a non-cyclic subgroup of C2a1 × C2β1 .

Therefore, any non-cyclic little group is obtained by restricting the group A1 in equation (38)
to be one of the cyclic subgroups of C2a1 ×C2β1 given in equation (59) or any of the non-cyclic
subgroups of C2a1 × C2β1 given in theorem 1. We conclude that
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Theorem 3. The cyclic little groups of B(2, 2) are precisely those cyclic subgroups of
Cn × Cm which contain one of the groups given in equation (59). The non-cyclic little groups
of B(2, 2) are precisely those non-cyclic subgroups of Cn × Cm which contain either one of
the groups given in equation (59) or any of the non-cyclic subgroups of C2a1 × C2β1 given in
theorem 1.

However, what we actually need is explicit expressions for the generators of the little
groups of B(2, 2). This is attained in the next two theorems which are readily obtained by
combining the results of theorems 2 and 3 and which are given without proof. The first
theorem describes the generators of the cyclic little groups of B(2, 2):

Theorem 4. Let C be a cyclic little group C of B(2, 2). Then C is generated by (49)
where n and m are positive even numbers. Furthermore, in (55) and (56) one of
the primes p1, p2, . . . , pν is the number 2. If, say, pt = 2, t ∈ {1, 2, . . . , ν} then
rt ∈ {1, 2, . . . , 2kt − 1} − {2, 2 · 2, . . . , (2kt−1 − 1)2}, and at · bt �= 0. The other indices
which appear in (55)and (56) take the values given at the end of theorem 2. The cyclic little
group C can alternatively be written as in equation (57), where, in expressions (55) and (56)
of A and B respectively, the aforementioned restrictions on the indices involved have been
taken into account.

The second theorem gives the generators of the non-cyclic little groups of B(2, 2):

Theorem 5. Let C be a non-cyclic little group C of B(2, 2). A legitimate choice for the
generators of C is given by (43) and (46), where n and m are positive even numbers. We
distinguish the two cases:

(i) The group Z2 is contained in a cyclic subgroup of C2at × C2bt . In this case, in (44) and
(45) one of the primes p1, p2, . . . , pν equals to 2. If, say, pt = 2, t ∈ {1, 2, . . . , ν}, then
rt ∈ {1, 2, . . . , 2kt − 1}− {2, 2 · 2, . . . , (2kt−1 − 1)2}, and at · bt �= 0. There exists at least
one q ∈ {ν + χ + τ + ψ + 1, . . . , ν + χ + τ + ψ + σ + θ + φ + ξ} for which aq · bq �= 0.

When aq = bq then aq � 2. The other indices which appear in (44), (45), (47) and (48)
take the values specified in theorem 2.

(ii) The group Z2 is contained in a non-cyclic subgroup of C2at × C2bt . In this case,
in (44) and (45) some of the exponents ai and bi, i ∈ {1, . . . , ν + χ + τ + ψ}, or
in fact all of them, can be equal to zero. Moreover, there exists precisely one ∈
{ν + χ + τ + ψ + 1, . . . , ν + χ + τ + ψ + σ + θ + φ + ξ} for which pt = 2 and at · bt �= 0.

When at = bt then at � 2. The other indices which appear in (44), (45), (47) and (48)
are those assigned in theorem 2.

Alternatively, in each case, C can be written as in equations (42) and (54), where, in expressions
(44), (45), (47) and (48) of A1,B1,A2, and B2 respectively, the aforementioned restrictions
on the indices involved in each case have been taken into account.

This completes our description of the finite little groups of B(2, 2). The following
conjecture (see also [18]) comments more on their significance.

Conjecture. These finite little groups are involved in the definition of solutions to classical
ultrahyperbolic general relativity which are neither self-dual nor anti-self-dual but far more
general mixtures of them. These solutions correspond to the irreducibles of B(2, 2) which are
induced from precisely these finite little groups.
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9. IRs of the little groups Lφ and G-invariant measures on the orbits G/Lφ

From the discussion in appendix A it follows that in order to give the operators of the induced
representations of B(2, 2) explicitly it is necessary to give the following information:
U . An irreducible unitary representation U of Lφ on a Hilbert space D for each Lφ .
O. A G-quasi-invariant measure µ on each orbit Gφ ≈ G/Lφ ; where Lφ denotes the little
group of the base point φ ∈ L2

e(T
2) of the orbit Gφ · G denotes the group G2 = G × G,G =

SL(2, R), and ≈ denotes homeomorphism.

To find the induced representations of B(2, 2) = L2
e(T

2) s© T G2, then, it is enough to provide
the information cited in U and O for each of the orbit types. Following the enumeration
introduced in the table of section 2 we have

U . U1. The IRs U of K = SO(2) × SO(2) are parameterized by a pair of
integers (n,m). For distinct representations, n and m take independently the values n =
. . . ,−2,−1, 0, 1, 2, . . . and m = . . . ,−2,−1, 0, 1, 2, . . . . Denoting these representations by
U(n,m), they are given by multiplication in one complex dimension D ≈ C by

U(n,m) ((R (ϑ) , R (ϕ))) = einϑeimϕ. (60)

U2 . The IRs U of CN × SO(2) are parameterized by a pair of integers (ν, s) which
for distinct representations take independently the values ν = 0, 1, 2, . . . , N − 1 and
s = . . . ,−2,−1, 0, 1, 2, . . . . Denoting these representations by U(ν,s), they are given by
multiplication in one complex dimension D ≈ C by

U(ν,s) (CN × SO(2)) = D(ν,s)

(
R

(
2π

N
j

)
, R (ϕ)

)
= ei 2π

N
νj eisϕ, (61)

where j parameterizes the elements of the group CN.

U3. Similarly, the IRs U of SO(2)× CN are parameterized by the pair of integers
(t, µ), where, for distinct representations, t and µ take independently the values t =
. . . ,−2,−1, 0, 1, 2, . . . and µ = 0, 1, 2, . . . , N − 1. Denoting these representations by
U(t,µ), they are given by multiplication in one complex dimension D ≈ C by

U(t,µ) (SO(2) × CN) = U(t,µ)

(
R (ϑ) , R

(
2π

N
j

))
= eitϑei 2π

N
µj . (62)

U4. We note that H(N,p, q) = (
R (pϑ) , R

(
qϑ + 2π

N
j
)) = H(p, q) × CN, where

H(p, q) = (R (pϑ) , R (qϑ)) , and, CN = (
I, R

(
2π
N

j
))

. We comment firstly on the IRs
of H(p, q). All IRs of an Abelian group are one dimensional. Let U(p,q) be a complex
one-dimensional representation of H(p, q). Then we may write

U(p,q)((R(pϑ), R(qϑ))) = χ(p,q)(θ)I, (63)

where χ(p,q) : H(p, q) → C is a complex-valued function on H(p, q) that is never zero, and
I is the identity operator in a one-dimensional complex Hilbert space D ≈ C. Since U(p,q) is
a representation

χ(p,q)(ϑ1 + ϑ2) = χ(p,q)(ϑ1)χ(p,q)(ϑ2). (64)

The condition for the representations being unitary reads

|χ(p,q)(ϑ)| = 1. (65)

The condition (R(p(ϑ + 2π)), R(q(ϑ + 2π))) = (R(p(ϑ)), R(q(ϑ))) implies

χ(p,q)(ϑ + 2π) = χ(p,q)(ϑ). (66)
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Therefore, one has to find continuous complex-valued functions χ(ϑ) satisfying the
equations (64), (65) and (66). It is well known (see, for example, [26]) that all such functions
have the form

χ(p,q)(ϑ) = eiwϑ, where w is an integer. (67)

It is worth pointing out that χ(p,q)(ϑ) does not depend on the pair (p, q). Consequently, the
IRs U of H(p, q) are indexed by an integer w which for distinct representations takes the
values w = . . . ,−2,−1, 0, 1, 2, . . . and are given by multiplication in one complex dimension
D ≈ C by

U(w)(R(p(ϑ)), R(q(ϑ))) = eiwϑ . (68)

It follows that the IRs of H(N,p, q) are indexed by a pair of integers (w, ξ). The indices w and
ξ for distinct representations take independently the values w = . . . ,−2,−1, 0, 1, 2, . . . and
ξ = 0, 1, 2, . . . , N − 1 . These representations, denoted by U(w,ξ), operate by multiplication
on one complex dimension D ≈ C and are given by

U(w,ξ)(H(N, p, q)) = U(w,ξ)

((
R (pϑ) , R

(
qϑ +

2π

N
j

)))
= eiwϑ ei 2π

N
ξj . (69)

U5. A finite little group C of B(2, 2) is either cyclic or direct product of two cyclic groups
(section 8). The cyclic little groups are described in detail in theorem 4 and the non-cyclic ones
are given explicitly in theorem 5. When C is cyclic (equation (57)) the IRs U of C are indexed
by an integer κ which for distinct representations takes values in the set {0, . . . , |C| − 1}.
The order |C| of C is given by (58). These representations, denoted by U(κ), are given by
multiplication in one complex dimension D ≈ C by

U(κ)(C) = U(κ)

((
R

((
2π

n
A

)
i

)
, R

((
2π

m
B
)

i

)))
= ei 2π

|C| κi
. (70)

When C is a direct product of two cyclic groups, i.e., C = C1 × C2, (equation (54)) the IRs of
C are indexed by a pair of integers (γ, δ). The indices γ and δ for distinct representations take
independently the values γ = 0, 1, 2, . . . , |C1| − 1 and δ = 0, 1, 2, . . . , |C2| − 1, where, |C1|
and |C2| are given by (53). These representations, denoted by U(γ,δ), operate on one complex
dimension D ≈ C and are given by (equation (54))

U(γ,δ)(C) = U(γ,δ)

((
R

(
2π

n
(A1j1 + A2j2)

)
, R

(
2π

m
(B1j1 + B2j2)

)))

= e
i 2π

|C1| γ j1 e
i 2π

|C2| δj2
, (71)

where j1 ∈ {0, . . . , |C1|−1} and j2 ∈ {0, . . . , |C2|−1}. We now proceed to give the information
cited in O. Although a G-quasi-invariant measure is all what is needed, a G-invariant measure
will be provided in all cases. Following the enumeration introduced in the table of section 2
we have

O. O1. In appendix B it is proved that the construction of a unique (up to a constant factor)
G-invariant measure on the orbits 01 ≡ G/Lφ, Lφ = K = SO(2) × SO(2) necessitates the
construction of a G-invariant measure on G and the construction of a K-invariant measure on
K. A G-invariant measure on

G =
{((

a b

c d

)
,

(
e f

j k

))
, a, b, c, d, e, f, j, k ∈ R, ad − bc = 1, ek − jf = 1

}
is given [27] by the 6-form

dg = da ∧ db ∧ dc ∧ de ∧ df ∧ dj

ae
(72)
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Thus, an invariant measure on G is obtained. A K-invariant measure on K is given by
the 2-form dθ ∧ dφ, where θ, φ are the usual angular coordinates which cover the 2-torus
SO(2) × SO(2) ≈ S1 × S1.

O2. Regarding the orbits 02 ≡ G/Lφ, Lφ = CN×SO(2), we note that 02 ≡ G/(CN×SO(2)) =
(G/(I × SO(2)))/(CN × I ). In appendix B a G-invariant measure on the quotient spaces
0̃2 ≡ G/(I × SO(2)) is given. The orbits 02 inherit the constructed G-invariant measure on
the spaces 0̃2. The reason is the following. The quotient space 02 ≡ 0̃2/(CN × I ) is precisely
the space of orbits of the right action T2 : 0̃2 × (CN × I ) −→ 0̃2 of the group CN × I on 0̃2
defined by

((g, h)(I × SO(2)) ◦
(

R

(
2π

N
i

)
× I

)
:=

(
(g, h) ·

(
R

(
2π

N
i

)
× I

))
(I × SO(2)), (73)

where (g, h) ∈ G, (g, h)(I × SO(2)) ∈ 0̃2, and R
(

2π
N

i
) ∈ CN. The symbol ◦ denotes the

action T2, and · denotes the group multiplication in G. It can be easily proved that the action
(73) is fixed point free. Since CN is finite and since the action (73) is fixed point free the orbits
02 inherit the G-invariant measure on the quotient spaces 0̃2.

O3. Regarding the orbits 03 ≡ G/Lφ, Lφ = SO(2) × CN, we note that 03 ≡ G/(SO(2) ×
CN) = (G/(SO(2) × I ))/(I × CN). The construction of a G-invariant measure on the orbits
03 is similar to the construction in case O2.

O4. Regarding the orbits 04 ≡ G/Lφ, Lφ = H(N,p, q) = H(p, q) × (I × CN), where
H(p, q) = (R(pϑ), R(qϑ)), we note that 04 ≡ G/H(N, p, q) = (G/H(p, q))/(I × CN).

In appendix B a G-invariant measure on the quotient spaces 0̃4 ≡ G/H(p, q) is given. The
orbits 04 inherit the aforementioned G-invariant measure on the quotient spaces 0̃4 : the orbit
04 ≡ 0̃4/(I ×CN) is precisely the space of orbits of the right action T4 : 0̃4×(I ×CN) −→ 0̃4
of the group I × CN on 0̃4 defined by

((g, h)H(p, q)) ∗
(

I × R

(
2π

N
i

))
:=

(
(g, h) ·

(
I × R

(
2π

N
i

)))
H(p, q), (74)

where (g, h) ∈ G, (g, h)H(p, q) ∈ 0̃4, and R
(

2π
N

i
) ∈ CN. The symbol ∗ denotes the action

T4. Since CN is finite and since the action (74) is fixed point free the orbits 04 inherit the
G-invariant measure on the quotient spaces 0̃4.

O5. The orbits 05 ≡ G/Lφ, Lφ = C, where C is either cyclic or direct product of two cyclic
groups, can be endowed with the G-invariant measure on G given in case O1. Indeed, the orbit
05 ≡ G/Lφ is the space of orbits of the right action T5 : G × C −→ G of the group C on G
given by

(g, h) � c := (g, h) · c, (75)

where (g, h) ∈ G, and c ∈ C. Thus the action T5 denoted by � is identical to the group
multiplication in G. Since the group C is finite and since the action (75) is fixed point free the
coset space 05 ≡ G/C inherits the measure on G.

This completes the necessary information in order to construct the induced representations
of B(2, 2). The following remarks are in order regarding the representations of B(2, 2) obtained
by the above construction.

The subgroup L2
e(T

2) of B(2, 2) = L2
e(T

2) s© T G2 has been topologized as a (pre)Hilbert
space by using a natural measure dθ ∧ dφ on the 2-torus T 2 = S1 × S1 and by introducing
a scalar product into L2

e(T
2) defined by (9). The Hilbert-type topology employed here for

L2
e(T

2) × G2 is the appropriate one [28] for describing quantum mechanical systems in
asymptotically flat spacetimes. The group G = SL(2, R) has been endowed with the standard
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topology, and B(2, 2) in the product topology of L2
e(T

2)×G2 becomes a non-locally compact
group; the proof follows without substantial change in Cantoni’s proof [6] for the ordinary
BMS group B. Since in the Hilbert-type topology B(2, 2) is not locally compact the theorems
dealing with the irreducibility of the representations obtained by the above construction no
longer apply [8]. However, the induced representations obtained above are irreducible. The
proof follows very closely the one given in [13] for the case of the original BMS group B. If
the G-action on the dual group L̂ of L2

e(T
2) is not too pathological then the list of irreducibles

obtained by the above construction is exhaustive. The G-action is not too pathological when
the G-orbits in L̂ can be enumerated in some way, namely, when there is a Borel set in L̂ that
meets each orbit exactly once. Interestingly enough, it has been proved [32, 33] that this is
precisely the case in the Hilbert-type topology employed here. To conclude, in this paper all
the continuous, unitary, irreducible representations of B(2, 2) have been constructed.

10. Conclusion

The main results and conclusions obtained in the present paper are listed here:

(i) The finite little groups of B(2, 2) have been determined explicitly and the operators of
the B(2, 2)-irreducibles have been given in all cases by using Wigner–Mackey’s theory
of induced representations of semi-direct products. The list of irreducibles so obtained is
exhaustive because the ‘supertranslations’ L2

e(T
2) of B(2, 2) have been employed with

the Hilbert topology. Quite unexpectedly, the representation theory dictates that all the
B(2, 2)-elementary entities—apart from those induced from cyclic little groups—carry
two distinct discrete ‘spins’ which take integer values in all cases.

(ii) The results presented here will also be useful in the study of the representation theory
of CB and EB since subgroups of Cn × Cm are expected [17] to appear as little groups
of CB and EB. These two groups figure prominently among the 42 generalizations
defined in [17]. The study of the representation theory of CB is important in this research
programme since CB is the complexification of B as well as of B(2, 2), and the study of
the representation theory of EB will clarify [18] the connection with the ALE gravitational
instantons.

(iii) In the case of EB the large number of subgroups of Cn × Cm suggests [18] that the
gravitational multi-instantons of Gibbons and Hawking [31] represent only a very small
number of solutions of a class of solutions whose more general members are mixtures
of self-dual and anti-self-dual solutions. The existence of more general solutions in the
Euclidean case has also been suggested in a different context by G’t Hooft [25].

(iv) It has been proved [14, 15] that all ALE spaces at infinity resemble a quotient R4/�,

where � is a finite subgroup of SU(2). The research programme being pursued here
suggests [18] that more general solutions which are mixtures of self-dual and anti-self-
dual solutions exist both in real spacetimes in Euclidean and ultrahyperbolic signatures
and in complex spacetimes. In the ultrahyperbolic case the finite little groups determined
here are expected to play the role of � in the Euclidean case.

(v) In these more general solutions, subgroups of Cn × Cm—the finite little groups in each
case—are expected [18] to play the role of � both in the Euclidean and in the complex
case. The physical interpretation of these odd-looking solutions—flat manifolds whose
certain points are identified at the neighbourhood of infinity—which do not seem to have
analogues in other areas of physics and their significance for low-energy quantum gravity
is an open problem in all cases.
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Appendix A. Summary of Wigner–Mackey’s representation theory of
semi-direct products

We will give the bare essentials of Wigner–Mackey’s representation theory ([7–10, 29]) in
order to construct explicitly the operators of the induced representations of B(2, 2).

Let A and G be topological groups, and let T be a given homomorphism from G into the
group of automorphisms Aut(A) of A. Suppose that A is Abelian and B = A s© T G is the
semi-direct product of A and G is specified by the continuous action T : G −→ Aut(A). In
the product topology of A × G,B then becomes a topological group. It is assumed that it
becomes a separable locally compact topological group.

The irreducible continuous representations of A (characters) can be given in the structure
of an Abelian group Â, the dual group of A, with group operation given by (χ1χ2)(α) =
χ1(α)χ2(α). Any bijective map µ : A −→ A induces a map Â −→ Â, χ −→ µχ, defined
by

(µχ)(α) := χ(µ−1α). (A.1)

In this way the action T of G on A induces a dual action T̂ of G on Â defined by

(T̂ (g)χ)(α) := χ(T (g−1)α), (A.2)

where g ∈ G, χ ∈ Â, and α ∈ A. Since T (g)α = gαg−1 the last equation yields

(T̂ (g)χ)(α) = χ(g−1αg). (A.3)

For a given character χ ∈ Â, the largest subgroup Lχ of G which leaves χ fixed is called the
little group of χ , i.e.,

Lχ = {g ∈ G | T̂ (g)χ = χ}. (A.4)

Lχ is a closed subgroup of G. The set of characters which can be reached from χ by the
G-action is called the orbit of χ , denoted by Gχ . Since A acts trivially on A and hence on
Â (equation (A.3)), the largest subgroup of B which leaves χ fixed is the semi-direct product
Bχ = A s© T Lχ . Bχ is a closed subgroup of B.

In the class of groups we are considering, we restrict our attention to measures on Â

which are concentrated on single orbits of the G-action T̂ . The remaining ergodic measures
not concentrated on single orbits are called strictly ergodic. Now there is a natural bijection

G/Lχ −→ Gχ,

given by gLχ −→ gχ, where g ∈ G. This bijection will even be a homeomorphism under
quite general conditions. We will identify that G/Lχ and Gχ · Â is a disjoint union of the
orbits Gχ. The trivial action of A on Â implies that Gχ = Bχ and hence G/Lχ = B/Bχ . Let
U be a continuous irreducible unitary representation of the little group Lχ on a Hilbert space
D. Then

χU : (α, l) −→ χ(a)U(l), (A.5)
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where α ∈ A and l ∈ Lχ is a continuous unitary irreducible representation of the group
Bχ = A s© T Lχ in D.

Let X be a topological space. Two measures ν, ν̃ on X are equivalent if they assume
the value zero for the same Borel sets in X . The measure class of ν is its equivalence class
under this equivalence relation. Since Lχ is a closed subgroup of G and G is locally compact
there is [29] a unique non-zero measure class M in the coset space G/Lχ, called the invariant
measure class on G/Lχ, such that for each ν ∈ M and each g ∈ G the measure νg defined by

νg(E) := ν(g−1E), for each Borel set E ⊂ G/Lχ, (A.6)

is also in M. If for all g ∈ G, the measures νg and ν have the same Borel sets of measure zero
then the measure ν is called G-quasi-invariant. The measure ν is called G-invariant when

νg = ν, for each g ∈ G. (A.7)

When ν is G-quasi-invariant there exists a positive (ν-a.e.) continuous function on G/Lχ,

denoted by dνg/dν, such that

νg[E] =
∫

E

(
dνg

dν

)
(p) dν(p) for all Borel sets E ⊂ G/Lχ . (A.8)

The ‘Jacobian’ dνg/dν is known as the Radon–Nikodym derivative of νg with respect to ν.

Let Hν denote the space of functions ψ : G −→ D which satisfy the conditions

(a) ψ(gh) = U(h−1)ψ(g) (g ∈ G, h ∈ Lχ), (A.9)

(b)

∫
Gχ

〈ψ(p),ψ(p)〉 dν(p) < ∞, (A.10)

where the scalar product under the integral sign is that of D, and, in (b), the integrand is
expressed as a function on Gχ ≈ G/Lχ since, in view of (a), the integrand is constant on the
cosets in G/Lχ . Hν is turned into a Hilbert space by introducing the scalar product

〈ψ1, ψ2〉 =
∫
Gχ

〈ψ1(p), ψ2(p)〉 dν(p). (A.11)

Define an action of B = A s© T G on Hν by

(goψ)(g) =
√

dνgo

dν
(gχ)ψ(g−1

o g), (A.12)

(αψ)(g) = [(T̂ (g)χ)(α)]ψ(g), (A.13)

where g, go ∈ G, χ ∈ Â, α ∈ A, and dνgo

/
dν is the Radon–Nikodym derivative of νgo with

respect to ν. It is straightforward to show that this action gives a unitary representation of B
on Hν, which is continuous whenever U is. This is the representation of B induced from χ

and the irreducible representation U of the little group Lχ. We note that when ν is G-invariant
then dνgo

dν
(g) = 1, and this is precisely what happens in the case of B(2, 2).

In a nutshell the central results of induced representation theory are the following:

(i) Given the topological restrictions on B = A s© T G (separability and local compactness),
any representation of B, constructed by the method above, is irreducible if the
representation U of Lχ on D is irreducible. Thus an irreducible representation of B
is obtained for each χ ∈ Â and each irreducible representation U of Lχ .

(ii) If B = A s© T G is a regular semi-direct product (i.e., Â contains a Borel subset which
meets each orbit in Â under B in just one point) then all of its irreducible representations
can be obtained in this way.
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Appendix B. G-invariant measures on the quotient spaces 01, 0̃2, 0̃3, 0̃4

To provide G-invariant measures on the homogeneous spaces 01, 0̃2, 0̃3, 0̃4 it is convenient
to employ the following ([30]):

Theorem. Let G be a Lie group, H a closed subgroup. The relation

|det AdG(h)| = |det AdH (h)| (h ∈ H) (B.1)

is a necessary and sufficient condition for the existence of a positive G-invariant measure dµH

on G/H , which is unique up to a constant factor, and satisfies∫
G
f (g) dµ(g) =

∫
G/H

(∫
H

f (gh) dµ(h)

)
dµH , (B.2)

where dµ(g) and dµ(h) are, respectively, suitably normalized invariant measures on G
and H.

Here AdG denotes the adjoint representation of the group G and f is any continuous
function of compact support on G. Since any function on G constant on H cosets may be
regarded as a function on G/H , (B.2) defines dµH on G/H . Thus, in each case, it is sufficient
to verify the condition on the moduli of the determinants, and to provide an H-invariant
measure dµ(h) on H. H-invariant measures are given in section 9. The condition (B.1) on the
determinants is verified for the case of the homogeneous space 0̃4 ≡ G/H(p, q). The other
cases are similar.

Since H = H(p, q) is Abelian, AdH(p,q)(ε) is the identity operator, so that |det AdH(p,q)

(ε)| = 1 for all ε ∈ H(p, q). It must now be shown that |det AdG(ε)| = 1. A basis for the Lie
algebra of G is given by the generators

�i =
[
Ai 0
0 0

]
, �3+i =

[
0 0
0 Ai

]
, (B.3)

where 0 is the 2 × 2 zero-matrix and Ai, i = 1, 2, 3

A1 =
[

0 1
1 0

]
, A2 =

[
1 0
0 −1

]
, A3 =

[
0 1
−1 0

]
, (B.4)

is a basis for the Lie algebra of SL(2, R). Taking

ε =




cos(pθ) sin(pθ) 0 0
−sin(pθ) cos(pθ) 0 0

0 0 cos(qθ) sin(qθ)

0 0 −sin(qθ) cos(qθ)


 , (B.5)

a straightforward calculation gives

AdG(ε) =




cos(2pθ) sin(2pθ) 0 0 0 0
−sin(2pθ) cos(2pθ) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(2qθ) sin(2qθ) 0
0 0 0 −sin(2qθ) cos(2qθ) 0
0 0 0 0 0 1




. (B.6)

Evidently, det AdG(ε) = 1 for all ε ∈ H(p, q), so that the required condition (B.1) is satisfied.
Hence the unique (up to a constant factor) G-invariant measure on 0̃4 ≡ G/H(p, q) is given.
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